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Abstract
Motivated by the recently discovered triangular magnet NiGa2S4, we
investigated a spin antiferronematic phase in the spin-1 bilinear–biquadratic
model. We obtained the energy dispersion of elementary excitations by
bosonizing spin operators, and the dynamic and static spin correlations are
calculated. Low energy properties of NiGa2S4 are consistently explained using
the scenario of nematic order, including the algebraic temperature dependence
of the specific heat C(T ) ∼ T 2 and a finite value of the magnetic susceptibility
at zero temperature. We also calculated the rate of relaxation of the nuclear
magnetic resonance, and found T −1

1 ∝ T 3, a scaling different from that in the
magnetically ordered phase. Some comments are also given on how to identify
antiferronematic orders experimentally.

Recently, the triangular antiferromagnet NiGa2S4 was found to exhibit very exotic low
temperature properties [1]. First of all, although the Weiss temperature is about 80 K, the
system does not show a magnetic long range order down to the lowest temperature 0.35 K in the
measurement, while the specific heat C(T ) ∼ T 2 below 10 K is similar to that for magnetically
ordered states in two dimensions. Secondly, the magnetic susceptibility gradually increases
with decreasing temperature, and approaches a finite value. Thirdly, a neutron experiment
revealed a peak at an incommensurate wavevector K ∼ (π/

√
3, 0). However, this was not a

magnetic Bragg peak, and the spin correlation length did not diverge but saturated to about
ξ ∼ 20 Å, only seven lattice units. In this paper, we will examine the possibility of a
hidden order that reproduces low temperature properties similar to those in critical spin liquid
states [2–4].

For exploring possible order parameters, an important point is that the system can be
described as a pure spin model with no spin anisotropy, since Ni2+ ions do not have orbital
degrees of freedom [1]. Therefore, order parameters should be represented in terms of spin
operators. We will investigate the simplest candidate, spin quadrupole moments, Qμμ′ =
1
2 〈SμSμ

′ + Sμ
′
Sμ〉 − 1

3 S(S + 1)δμμ′ , where μ is the spin index, and this also corresponds to
nematic order [5–8]. The order parameter Qμν describes the anisotropy of spin fluctuations, not
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Figure 1. (a) Director configuration of the three-sublattice nematic order. nA ‖ x , nB ‖ y, nC ‖ z.
The dotted triangle shows a unit cell of the ordered state. (b) Mean field level scheme in the C-
sublattice.

the static moment, and can be nonzero only if S � 1.1 In NiGa2S4, local spins are S = 1 and
therefore we consider the nematic order parameter defined at each site. Neutron experiments
revealed a peak of scattering at incommensurate wavevectors K, not at k = 0 or at the Brillouin
zone boundary. This suggests that the expected nematic order also modulates in space, i.e.,
some antiferronematic order.

When nematic orders are explored, the S = 1 case is particularly simple. Consider a
single-site S = 1 system under a general quadrupolar molecular field. We can show that its
ground state always has a uniaxial symmetry such that the principal values of Qμν are two 1

3

s and one − 2
3 , even when the quadrupolar field is biaxial. Therefore, the axis direction for

the smallest principal value is sufficient to characterize the nematic state, and this is called the
director n. −n is equivalent to n. The corresponding wavefunction is given as (n ·S)|ψn〉 = 0.

A canonical model describing spin nematic states is the bilinear–biquadratic Hamiltonian,
and we will use the S = 1 version of this model with nearest-neighbour interactions to
investigate the nematic states on the triangular lattice:

H =
∑

〈r,r′〉

[
JSr · Sr′ + K (Sr · Sr′)2

]
. (1)

The mean field analysis for general lattices predicts four types of phase [9, 10]:

(i) ferromagnetic (when K > J and J < 0),
(ii) ‘antiferromagnetic’ (when K < 0 and J > 0),

(iii) ferronematic (when K < J < 0), and finally
(iv) ‘antiferronematic’ (when 0 < J < K ).

In the ferromagnetic and antiferromagnetic phases, the spin dipole moment has a finite static
value, 〈Sr〉 	= 0, whereas the quadruple moment is finite, 〈Qμν

r 〉 	= 0, in the ferronematic and
antiferronematic phases. In the antiferromagnetic phase, neighbouring dipole moments ‘try’ to
point in opposite directions, whereas in the antiferronematic phase, neighbouring directors tend
to be orthogonal to each other.

It is interesting that the triangular lattice, being tripartite, is not frustrated for the
antiferronematic order, since up to three directors can be orthogonal to each other. See
figure 1(a). The mean field ground state is unique aside from the trivial degeneracy related to
global spin rotation, |�MF〉 = ∏

R |Sx = 0〉A,R ⊗|Sy = 0〉B,R ⊗|Sz = 0〉C,R. Here, r = ( j,R),
with sublattice index j ∈ {A, B,C} and unit-cell coordinate R.

1 One can also define similar nematic order parameters for spin-1/2 systems, if we compose the effective spin S � 1
using multiple spins with S = 1/2.
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Figure 2. Energy dispersion of two types of excitation for J/K = 0.5 and 0.9. The Brillouin zone
of the three-sublattice order is also shown. �: (0, 0), K: (2π/3, 2π/3

√
3), M: (2π/3, 0).

We now study the effects of quantum fluctuations. To this end, let us represent at
each site the local mean field state as a vacuum and the other basis states in terms of two
types of boson [7]. For example, in the C-sublattice, |Sz = 0〉 = |vac〉, |Sz = ±1〉 =
(1/

√
2)(α† ± iβ†)|vac〉, and therefore the spin operators are represented as Sx = α† + α,

Sy = β† + β , and Sz = −i(α†β − β†α), see figure 1(b). In a similar way, α and β bosons
are also introduced for the A- and B-sublattices. It is noted that these bosons are subject to the
local constraint that at most only one boson can be excited at any site.

We rewrite the model (1) in terms of these boson operators and then neglect their
interactions. Then, the Hamiltonian reads in Fourier representation as Hb = 3K� +
3K

∑
k[hk(βA, αB)+ hk(βB , αC)+ hk(βC, αA)] and

hk(β j , α j ′) = β
†
jkβ jk + α

†
j ′kα j ′k

+ 1
2γk

{[−(1 + κ)β
†
jkα j ′k + (1 − κ)β

†
jkα

†
j ′−k

] + h.c.
}
, (2)

where κ = 1 − 2J/K , � is the number of unit cells and the sum is taken over the reduced
Brillouin zone of the three-sublattice order, and γk = 1

3 e−ikx + 2
3 eikx /2 cos(

√
3ky/2) ≡ �keiφk .

We can easily diagonalize the boson Hamiltonian by Bogoliubov transformation: Hb =∑
k, j,m=± εm,kb†

jmkb jmk + E0 with the eigenenergy

ε±,k = 3K
√
(1 ± �k)(1 ± κ�k). (3)

The energy dispersion is plotted in figure 2 for J/K = 0.5 and 0.9. The ε− branch is a
gapless excitation with asymptotically linear dispersion, ε−,k ∼ v |k| around k = 0, and the
velocity is v = 3

√
J K/2. The ε+ branch is gapped excitation, and it touches the ε− branch

at energy 3K on the six corners of the Brillouin zone. These bosonic excitations contribute to
magnetic fluctuations, and therefore, we may call them magnons also in this case.

The dynamical spin structure factor is given at zero temperature by Sμμ
′

j j ′ (k, ω) =
∑

ν〈0|Sμj,−k|ν〉〈ν|Sμ
′

j ′,k|0〉δ(ω − Eν + E0), where |ν〉 is the eigenstate with energy Eν and |0〉
is the ground state. Sμj,k is the Fourier transform of the spin on the j -sublattice. Structure factor

Sμμ
′

j j ′ (k, ω) vanishes when μ 	= μ′. S̄(k, ω) ≡ ∑
j Sμμj j (k, ω) is isotropic in spin space and

obtained as

S̄(k, ω) =
∑

m=±
e2θm,kδ(ω − εm,k),

+ 1

4�

∑

q,m,m′=±
sinh2(θm,k+q − θm′,q)δ(ω − εm,k+q − εm′,q), (4)
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Figure 3. Dynamical spin structure factor S̄(k, ω) for J/K = 0.5 at k: � → M. The energy
dispersion of ε±,k is also plotted.

where e4mθm,k = (1+mκ�k)/(1+m�k). The first and second terms are the contributions of the
one- and two-magnon creation processes, respectively. Figure 3 shows S̄(k, ω) for J/K = 0.5
along the � → K direction in the Brillouin zone. For each k, there are two delta-function
peaks at the one-magnon energies ε±,k, and they are accompanied by a two-magnon continuum
mainly on the higher energy side. As k → 0, the delta-function peak of the gapless branch
vanishes as

√
K/(8J )|k|δ(ω − ε−,k). There are no magnetic Bragg peaks, consistent with the

absence of ordinary magnetic dipole order.
The magnetic susceptibility χm can be calculated from the dynamical correlation function

using the relation χm = limk→0
2
3

∑
j, j ′∈{A,B,C}

∫ ∞
0 dω Sμμj j ′ (k, ω)/ω. As k → 0, the one-

magnon contribution of the gapped mode vanishes but that of the gapless mode converges to a
finite value, 2/(9J ). Adding the two-magnon contribution, the result at zero temperature is

χm = 2

9J
+ 1

3�

∑

q

sinh2(θ+,q − θ−,q)
ε+,q + ε−,q

, (5)

in physical units (gμB)
2. It is noted that χm is isotropic in spin space. The one-magnon part

agrees with the mean field value, and also coincides with the mean field value for the 120-
degree order in the pure Heisenberg model. χm is dominated by the one-magnon part and the
two-magnon part is very small, about 1.85% at largest. In both the J = 0 and J = K cases,
the two-magnon part of χm vanishes, and is ∝J around J = 0 and ∝√

K − J around J = K .
Another important quantity characterizing magnetic properties is the rate of relaxation

T −1
1 of the nuclear magnetic resonance (NMR). We calculate this following the standard

formula [11] T −1
1 = (2A2/�)

∑
k S̄(k, ωN → 0+). Here, A is a constant determined from

hyperfine coupling, and we have neglected its dependence on k. The resonance frequency ωN is
set to be negligibly small. We have calculated the temperature dependence of T −1

1 by assuming
that thermally excited magnons are not interacting with each other. The result is shown in
figure 4 for several values of J/K . The main contribution comes from scattering processes of
gapless magnons, predominant over other processes like magnon absorption/emission or those
involving gapped magnons. This gives the low temperature asymptotic form,

T −1
1 =

(
3A

8v2

)2

T 3 + · · · , (v = √
9J K/2). (6)

It is important that this differs from the behaviour in the antiferromagnetically ordered phase
T −1

1 ∼ T 2d−3 (d: spatial dimension) [11]. Magnetically ordered states have much larger
relaxation rate T −1

1 ∼ T 1 in two dimensions. Therefore, the combination of C(T ) and T −1
1 (T )

may be a good experimental test that can identify nematic states.
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Figure 4. Temperature dependence of the NMR relaxation rate T −1
1 . The units are A2 = 1.

Let us summarize the above results and compare with the experiments for NiGa2S4 [1].
We have found gapless bosonic excitations with linear energy dispersion. They are Goldstone
modes owing to the spontaneous breaking of the spin rotation symmetry, since spin fluctuations
are anisotropic in the nematic state. The gapless mode contributes to the specific heat as
C(T ) ∼ 12πζ(3)(T/v)2 ∼ 45.3(T/v)2 in units of kB per spin. Since the order parameter
is a tensor with continuous degrees of freedom as for the 120-degree magnetic order [12], the
nematic order does not appear at finite temperatures in two-dimensional systems [13]. However,
the spin correlation length grows very rapidly at low temperatures and exceeds the thermal
length [14], ξ � L th ∼ v/T . This means that the system is still well ordered up to the length
scale where thermal fluctuations matter, and this justifies our calculation assuming a long range
order. The zero-temperature magnetic susceptibility is finite and given by χm ∼ 2/(9J ) plus
a tiny quantum correction. The spin structure factor does not show magnetic Bragg peaks, and
this is consistent with the neutron experiment. These behaviours agree with the experimental
data.

A new result is the calculation of NMR relaxation rate. Our prediction for the
antiferronematic state is T −1

1 ∼ T 3. This is considerably suppressed compared with the
behaviour in the antiferromagnetic phase in two dimensions, T −1

1 ∼ T , and is rather similar
to that of the antiferromagnetically ordered phase in three dimensions. This is because, as
discussed for S(k, ω), the matrix elements of spin operators between the ground state and low
energy excited states have only small amplitude in the nematic phase. Thus, a two-dimensional
nematic state looks like a two-dimensional antiferromagnetic state as far as the behaviours
of the specific heat and magnetic susceptibility are concerned, while the behaviour is similar
to that of a three-dimensional antiferromagnetic state as regards the NMR relaxation rate.
When the magnon interaction becomes important at finite temperatures, the above temperature
dependence may eventually change to having a renormalized exponent. Although we need
more elaborate calculation to take account of effects, it should hold that the nematic state
has a larger exponent compared with magnetically ordered states, since low energy magnetic
dipole fluctuations are suppressed. In this way, the NMR experiments provide very important
information for identifying nematic states and distinguishing them from magnetically ordered
systems.

After our proposal of an antiferronematic scenario, two other groups also studied the
triangular bilinear–biquadratic model in order to understand NiGa2S4 [15, 16]. Both groups
also proposed a nematic order, but a ferronematic order, and the ferronematic scenario also
reproduces results consistent with the experiments including C(T ) ∼ T 2 and χm(T → 0) >
0. As we discussed in the introduction, we believe that a spatially modulated nematic
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configuration can more naturally explain the incommensurate nature of magnetic fluctuations,
rather than a uniform nematic configuration with frustrated Heisenberg spin–spin couplings.
To clarify which case is realized in the real material, we need further investigation including
longer range interactions in the model. However, as pointed in [15, 16], one can try two sets of
experimental tests.

The first test is that of the anisotropy of magnetic responses in the ordered state [16]. In
the ferronematic state, the spin rotation symmetry is lowered from isotropic down to uniaxial.
As regards the crystal structure, it is most likely that the uniaxial direction is perpendicular
to two-dimensional crystalline planes. Therefore, it is expected that |χcc − χaa| is large. On
the other hand, the antiferronematic state has macroscopic isotropic symmetry, and therefore
the above anisotropic should be quite small. The second test is that of the homogeneity of
magnetic responses [15], and this is also related to the anisotropy mentioned above. Spins in
nematic states do not respond to a magnetic field if their directors are parallel to the field, as
long as the applied field is not so strong. More generally, the response is dependent on the angle
between the field and the director. Therefore, if a magnetic field is applied to antiferronematic
states, induced magnetic moments distribute in space not uniformly but reflecting the director
configuration. The modulated pattern of induced moments, if present, can be detected, for
example, using neutron scattering. This effect is most visible when the magnetic field is tuned
to be parallel to one of the director directions. In the case of ferronematic orders, magnetic
moments are induced uniformly in space. These two sets of experiments are handy tests for
checking whether an order is ferronematic or antiferronematic, and it is highly desirable for
them to be performed in the near future.

Acknowledgments

The authors thank Satoru Nakatsuji, Tsutomu Momoi, Yusuke Nambu, and Keisuke Totsuka
for valuable discussions. Parts of the numerical computations were done at the Supercomputer
Centre at the ISSP, University of Tokyo, and YITP in Kyoto University. This work was
supported by a Grant-in-Aid for Scientific Research on Priority Areas (No. 17071011) and
Scientific Research (No. 16540313) from the Ministry of Education, Culture, Sports, Science
and Technology of Japan.

References

[1] Nakatsuji S et al 2005 Science 309 1697
[2] Anderson P W 1973 Mater. Res. Bull. 8 153
[3] Fazekas P and Anderson P W 1974 Phil. Mag. 30 423
[4] Some of the results in this paper were already reported in Tsunetsugu H and Arikawa M 2007 J. Phys. Soc. Japan

75 083701
[5] Chen H H and Levy P M 1971 Phys. Rev. Lett. 27 1383
[6] Nauciel-Bloch M, Garma G and Castets A 1972 Phys. Rev. B 5 4603
[7] Matveev V M 1974 Sov. Phys.—JETP 38 813
[8] Andreev A F and Grishchuk I A 1984 Sov. Phys.—JETP 60 267
[9] Papanicolaou N 1986 Phys. Lett. 116 89
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